A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models
نویسندگان
چکیده
In this paper, we present some results on a posteriori error analysis of finite element methods for solving linear nonlocal diffusion and bond-based peridynamic models. In particular, we aim to propose a general abstract frame work for a posteriori error analysis of the peridynamic problems. A posteriori error estimators are consequently prompted, the reliability and efficiency of the estimators are proved. Connections between non-local a posteriori error estimation and classical local estimation are studied within continuous finite element space. Numerical experiments (1D) are also given to test the theoretical conclusions.
منابع مشابه
A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملA Convergent Adaptive Finite Element Algorithm for Nonlocal Diffusion and Peridynamic Models
In this paper, we propose an adaptive finite element algorithm for the numerical solution of a class of nonlocal models which correspond to nonlocal diffusion equations and linear scalar peridynamic models with certain non-integrable kernel functions. The convergence of the adaptive finite element algorithm is rigorously derived with the help of several basic ingredients, such as the upper boun...
متن کاملAnalysis and Comparison of Different Approximations to Nonlocal Diffusion and Linear Peridynamic Equations
We consider the numerical solution of nonlocal constrained value problems associated with linear nonlocal diffusion and nonlocal peridynamic models. Two classes of discretization methods are presented, including standard finite element methods and quadrature based finite difference methods. We discuss the applicability of these approaches to nonlocal problems having various singular kernels and...
متن کاملMathematical and Numerical Analysis of Linear Peridynamic Models with Nonlocal Boundary Conditions
In this paper, we study the linear bond-based nonlocal peridynamic models with a particular focus on problems associated with nonstandard nonlocal displacement loading conditions. Both stationary and time-dependent problems are considered for a one-dimensional scalar equation defined on a finite bar and for a two-dimensional system defined on a square. The related peridynamic operators and asso...
متن کاملThe Bond-based Peridynamic System with Dirichlet-type Volume Constraint
In this paper, the bond-based peridynamic system is analyzed as a nonlocal boundary value problem with volume constraint. The study extends earlier works in the literature on nonlocal diffusion and nonlocal peridynamic models to include non-positive definite kernels. We prove the well-posedness of both linear and nonlinear variational problems with volume constraints. The analysis is based on s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 82 شماره
صفحات -
تاریخ انتشار 2013